Shiny is an R package that makes it easy to build interactive web applications (apps) straight from R.
Easy web apps for data science without the compromises
Something similar to this - different flavors possible, depending on your needs!
install.packages("shiny")
install.packages("tidyverse")
library(shiny)
runExample("01_hello")
A Shiny app is a web page (ui) connected to a computer running a live R session (server).
Users can manipulate the UI, which will cause the server to update the UI's displays (by running R code).
(default)
ui <- fluidPage(
titlePanel("Hello Shiny!"),
sidebarLayout(
sidebarPanel(…),
mainPanel(…)
)
)
library(shinydashboard)
ui <- dashboardPage(
dashboardHeader(),
dashboardSidebar(),
dashboardBody(
fluidRow(
box(…)
)
)
)
(new generation)
library(bslib)
ui <- page_sidebar(
title = "title panel",
sidebar = sidebar(…),
card(… ) # main content
)
...
sliderInput(
inputId = "bins",
label = "Number of bins:",
min = 1,
max = 50,
value = 30
)
⬇
input$bins
print(input$bins) # 15
print(input$bins) # 30
mainPanel(
plotOutput(outputId = "distPlot")
)
⬆
server <- function(input, output) {
output$distPlot <- renderPlot({
x <- faithful$waiting
bins <- seq(
min(x),
max(x),
length.out = input$bins + 1
)
hist(
x,
breaks = bins,
col = "#75AADB",
border = "white",
xlab = "Waiting time to...",
main = "Histogram of..."
)
})
}
mainPanel(
plotOutput(outputId = "distPlot")
)
⬆
server <- function(input, output) {
output$distPlot <- renderPlot({
x <- faithful$waiting
bins <- seq(
min(x),
max(x),
length.out = input$bins + 1
)
hist(
x,
breaks = bins,
col = "#75AADB",
border = "white",
xlab = "Waiting time to...",
main = "Histogram of..."
)
})
}
Output function | Creates |
dataTableOutput | DataTable |
htmlOutput | raw HTML |
imageOutput | image |
plotOutput | plot |
tableOutput | table |
textOutput | text |
uiOutput | raw HTML |
verbatimTextOutput | text |
Output function | Creates |
dataTableOutput | DataTable |
htmlOutput | raw HTML |
imageOutput | image |
plotOutput | plot |
tableOutput | table |
textOutput | text |
uiOutput | raw HTML |
verbatimTextOutput | text |
Resources:
Task: Complete the code for the calculator app!
15 min
One possible solution:
library(shiny)
# Define UI
ui <- fluidPage(
titlePanel("Shiny Calculator"),
sidebarLayout(
sidebarPanel(
numericInput("num1", label = "Enter first number:", value = 0),
numericInput("num2", label = "Enter second number:", value = 0),
radioButtons("operation", label = "Choose operation:", choices = list(
"add",
"subtract",
"multiply",
"divide"
))
),
mainPanel(
textOutput("result")
)
)
)
# Define server logic
server <- function(input, output) {
output$result <- renderText({
if (input$operation == "divide") {
req(input$num2 != 0)
}
result <- switch(input$operation,
"add" = input$num1 + input$num2,
"subtract" = input$num1 - input$num2,
"multiply" = input$num1 * input$num2,
"divide" = input$num1 / input$num2
)
paste("Result:", result)
})
}
# Run the application
shinyApp(ui = ui, server = server)
What can we do if we need the result of the calculation more than once?
server <- function(input, output) {
output$result <- renderText({
if (input$operation == "divide") {
req(input$num2 != 0)
}
result <- switch(input$operation,
"add" = input$num1 + input$num2,
"subtract" = input$num1 - input$num2,
"multiply" = input$num1 * input$num2,
"divide" = input$num1 / input$num2
)
paste("Result:", result)
})
output$otherResult <- renderText({
if (input$operation == "divide") {
req(input$num2 != 0)
}
result <- switch(input$operation,
"add" = input$num1 + input$num2,
"subtract" = input$num1 - input$num2,
"multiply" = input$num1 * input$num2,
"divide" = input$num1 / input$num2
)
otherResult <- result + 1
paste("The other result:", otherResult)
})
}
Duplicated code
# Define server logic
server <- function(input, output) {
result <- reactive({
if (input$operation == "divide") {
req(input$num2 != 0)
}
switch(input$operation,
"add" = input$num1 + input$num2,
"subtract" = input$num1 - input$num2,
"multiply" = input$num1 * input$num2,
"divide" = input$num1 / input$num2
)
})
output$result <- renderText({
paste("Result:", result())
})
output$otherResult <- renderText({
otherResult <- result() + 1
paste("The other result:", otherResult)
})
}
Encapsulation
Task: Encapsulate the result calculation!
5 min
One possible solution:
library(shiny)
# Define UI
ui <- fluidPage(
titlePanel("Shiny Calculator"),
sidebarLayout(
sidebarPanel(
numericInput("num1", "Enter first number:", value = 0),
numericInput("num2", "Enter second number:", value = 0),
radioButtons("operation", "Choose operation:", choices = list(
"add",
"subtract",
"multiply",
"divide"
))
),
mainPanel(
textOutput("result")
)
)
)
# Define server logic
server <- function(input, output) {
result <- reactive({
if (input$operation == "divide") {
req(input$num2 != 0)
}
switch(input$operation,
"add" = input$num1 + input$num2,
"subtract" = input$num1 - input$num2,
"multiply" = input$num1 * input$num2,
"divide" = input$num1 / input$num2
)
})
output$result <- renderText({
paste("Result:", result())
})
}
# Run the application
shinyApp(ui = ui, server = server)
x <- 2
y <- x + 1
print(y) #3
x <- 2
y <- x + 1
print(y) #3
x <- 5
print(y) #?
x <- 2
y <- x + 1
print(y) #3
x <- 5
print(y) #3
Imperative programming
(sequential)
x <- 2
y <- reactive(x + 1)
print(y) #3
x <- 5
print(y) #6
Declarative style "Recipe"
Example: k-means app from the Shiny for R Gallery
Example: k-means app from the Shiny for R Gallery
Reactive expressions are only accessible within reactive consumers
# Define server logic
server <- function(input, output) {
result <- reactive({
# Handling division by zero with req()
if (input$operation == "divide") {
req(input$num2 != 0)
}
switch(input$operation,
"add" = input$num1 + input$num2,
"subtract" = input$num1 - input$num2,
"multiply" = input$num1 * input$num2,
"divide" = input$num1 / input$num2
)
})
# print(input$num1) also would not work
print(result())
output$result <- renderText({
paste("Result:", result())
})
}
Error in .getReactiveEnvironment()$currentContext() :
Operation not allowed without an active reactive context.
• You tried to do something that can only be done from inside a reactive consumer.
Dependents dynamically register callbacks in reactive sources
output$plot1 <- renderPlot({
palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))
par(mar = c(5.1, 4.1, 0, 1))
plot(selectedData(),
col = clusters()$cluster,
pch = 20, cex = 3)
points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
})
Dependents dynamically register callbacks in reactive sources
output$plot1 <- renderPlot({
palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))
par(mar = c(5.1, 4.1, 0, 1))
plot(selectedData(),
col = clusters()$cluster,
pch = 20, cex = 3)
points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
})
Dependents dynamically register callbacks in reactive sources
output$plot1 <- renderPlot({
palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))
par(mar = c(5.1, 4.1, 0, 1))
plot(selectedData(),
col = clusters()$cluster,
pch = 20, cex = 3)
points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
})
Dependents dynamically register callbacks in reactive sources
# Combine the selected variables into a new data frame
selectedData <- reactive({
iris[, c(input$xcol, input$ycol)]
})
clusters <- reactive({
kmeans(
selectedData(),
input$clusters
)
})
Dependents dynamically register callbacks in reactive sources
# Combine the selected variables into a new data frame
selectedData <- reactive({
iris[, c(input$xcol, input$ycol)]
})
clusters <- reactive({
kmeans(
selectedData(),
input$clusters
)
})
Dependents dynamically register callbacks in reactive sources
# Combine the selected variables into a new data frame
selectedData <- reactive({
iris[, c(input$xcol, input$ycol)]
})
clusters <- reactive({
kmeans(
selectedData(),
input$clusters
)
})
Changed input triggers cascade of invalidation events
Changed input triggers cascade of invalidation events
Changed input triggers cascade of invalidation events
Invalidated nodes queue the callbacks on the server
Following collection, the server schedules the execution of the callbacks "flush"
And invalid nodes become cleared...
...completing the cycle