Interactive Data Visualization with R Shiny for Life Sciences

Day 1: Introduction

Michael Teske & Jonas Schmid, Zurich 08 April 2024

What is R Shiny?

shiny_logo_text

Shiny is an R package that makes it easy to build interactive web applications (apps) straight from R.

Easy web apps for data science without the compromises
https://shiny.posit.co/

Examples

Example 1 - from Shiny Gallery

https://shiny.posit.co/r/gallery/

Examples

Example 2 - Mouse Gastrulation Atlas

https://marionilab.cruk.cam.ac.uk/

What we will create

Something similar to this - different flavors possible, depending on your needs!

Schedule

Day 1

  • Introduction to R Shiny, your first app
  • Quick review of ggplot2
  • Exploring Widgets
  • Creating a dashboard

Day 2

  • Implementing interactive plot functions
  • Advanced R Shiny customization
  • Deploying Shiny apps

Assignment

Mini-project: further customisation of the app with advanced elements and functions (completion of milestones, group work possible) - Workload: ca. 20 h

Requirements

Laptop Internet access R Studio Shiny Slack
							
								install.packages("shiny")
								install.packages("tidyverse")
							
						

Test
							
								library(shiny)
								runExample("01_hello")
							
						

Anatomy of R Shiny

A Shiny app is a web page (ui) connected to a computer running a live R session (server).

ui ui ui

Users can manipulate the UI, which will cause the server to update the UI's displays (by running R code).

UI: Layouts

fluidPage

(default)

fluidPage
								
									ui <- fluidPage(
										titlePanel("Hello Shiny!"),
										sidebarLayout(
											sidebarPanel(…),
											mainPanel(…)
										)
									)
								
							

shinyDashboard

 

shinyDashboard
								
									library(shinydashboard)

									ui <- dashboardPage(
										dashboardHeader(),
										dashboardSidebar(),
										dashboardBody(
											fluidRow(
												box(…)
											)
										)
									)
								
							

bslib

(new generation)

bslib
								
									library(bslib)

									ui <- page_sidebar(
										title   = "title panel",
										sidebar = sidebar(…),
										card(… ) # main content
									)
								
							

...

The User interface provides input to the server

Ui
								
									sliderInput(
										inputId = "bins",
										label   = "Number of bins:",
										min     = 1,
										max     = 50,
										value   = 30
									)
								
							

Server
									
										input$bins
									
								
Slider_15_bins
print(input$bins) # 15
Slider_30_bins
print(input$bins) # 30

The server updates the output

Server
								
									server <- function(input, output) {

										output$distPlot <- renderPlot({

											x    <- faithful$waiting
											bins <- seq(
												min(x),
												max(x),
												length.out = input$bins + 1
											)

											hist(
												x,
												breaks = bins,
												col    = "#75AADB",
												border = "white",
												xlab   = "Waiting time to...",
												main   = "Histogram of..."
											)

										})

									}
								
							
example_faithful_15_bins

The server updates the output

Ui
									
										mainPanel(
											plotOutput(outputId = "distPlot")
										)
									
								

Server
								
									server <- function(input, output) {

										output$distPlot <- renderPlot({

											x    <- faithful$waiting
											bins <- seq(
												min(x),
												max(x),
												length.out = input$bins + 1
											)

											hist(
												x,
												breaks = bins,
												col    = "#75AADB",
												border = "white",
												xlab   = "Waiting time to...",
												main   = "Histogram of..."
											)

										})

									}
								
							
example_faithful_30_bins

Output Rendering functions

Output function Creates
dataTableOutput DataTable
htmlOutput raw HTML
imageOutput image
plotOutput plot
tableOutput table
textOutput text
uiOutput raw HTML
verbatimTextOutput text

Output Rendering functions

Output function Creates
dataTableOutput DataTable
htmlOutput raw HTML
imageOutput image
plotOutput plot
tableOutput table
textOutput text
uiOutput raw HTML
verbatimTextOutput text

Exercise 1

Resources:

Exercise 1

Task: Complete the code for the calculator app!

  1. Add a nice title
  2. Add two widgets for the numeric input (Numeric input, Slider...)
  3. Add one widget for the mathematical operation (Radio buttons, Select box...)
  4. Use the inputs in the server function (change placeholders)
  5. Add the output of the calculation to the UI
  6. Use req(input$num2 != 0) for safe division (?req)
     

15 min

alarm_clock

Exercise 1

One possible solution:

							
								library(shiny)

								# Define UI
								ui <- fluidPage(
									titlePanel("Shiny Calculator"),

									sidebarLayout(
										sidebarPanel(
											numericInput("num1", label = "Enter first number:", value = 0),
											numericInput("num2", label = "Enter second number:", value = 0),
											radioButtons("operation", label = "Choose operation:", choices = list(
												"add",
												"subtract",
												"multiply",
												"divide"
											))
										),
										
										mainPanel(
											textOutput("result")
										)
									)
								)

								# Define server logic
								server <- function(input, output) {

									output$result <- renderText({
										if (input$operation == "divide") {
											req(input$num2 != 0)
										}
										
										result <- switch(input$operation,
											"add"      = input$num1 + input$num2,
											"subtract" = input$num1 - input$num2,
											"multiply" = input$num1 * input$num2,
											"divide"   = input$num1 / input$num2
										)

										paste("Result:", result)
									})

								}

								# Run the application
								shinyApp(ui = ui, server = server)
							
						

Exercise 1 - Continued

What can we do if we need the result of the calculation more than once?

								
									server <- function(input, output) {
	
										output$result <- renderText({
											if (input$operation == "divide") {
												req(input$num2 != 0)
											}

											result <- switch(input$operation,
												"add"      = input$num1 + input$num2,
												"subtract" = input$num1 - input$num2,
												"multiply" = input$num1 * input$num2,
												"divide"   = input$num1 / input$num2
											)

											paste("Result:", result)
										})

										output$otherResult <- renderText({
											if (input$operation == "divide") {
												req(input$num2 != 0)
											}
	
											result <- switch(input$operation,
												"add"      = input$num1 + input$num2,
												"subtract" = input$num1 - input$num2,
												"multiply" = input$num1 * input$num2,
												"divide"   = input$num1 / input$num2
											)

											otherResult <- result + 1

											paste("The other result:", otherResult)
										})
										
									}
								
							

Duplicated code

								
									# Define server logic
									server <- function(input, output) {

										result <- reactive({
											if (input$operation == "divide") {
												req(input$num2 != 0)
											}

											switch(input$operation,
												"add"      = input$num1 + input$num2,
												"subtract" = input$num1 - input$num2,
												"multiply" = input$num1 * input$num2,
												"divide"   = input$num1 / input$num2
											)
										})

										output$result <- renderText({
											paste("Result:", result())
										})

										output$otherResult <- renderText({
											otherResult <- result() + 1
											paste("The other result:", otherResult)
										})

									}
								
							

Encapsulation

Exercise 1 - Continued

Task: Encapsulate the result calculation!

  1. Add a nice title
  2. Add two widgets for the numeric input (Numeric input, Slider...)
  3. Add one widget for the mathematical operation (Radio buttons, Select box...)
  4. Use the inputs in the server function (change placeholders)
  5. Add the output of the calculation to the UI
  6. Use req(input$num2 != 0) for safe division (?req)
  7. Encapsulate the calculation in result <- reactive({...})

5 min

alarm_clock

Exercise 1 - Continued

One possible solution:

							
								library(shiny)

								# Define UI
								ui <- fluidPage(
									titlePanel("Shiny Calculator"),

									sidebarLayout(
										sidebarPanel(
											numericInput("num1", "Enter first number:", value = 0),
											numericInput("num2", "Enter second number:", value = 0),
											radioButtons("operation", "Choose operation:", choices = list(
												"add",
												"subtract",
												"multiply",
												"divide"
											))
										),

										mainPanel(
											textOutput("result")
										)
									)
								)

								# Define server logic
								server <- function(input, output) {

									result <- reactive({
										if (input$operation == "divide") {
											req(input$num2 != 0)
										}

										switch(input$operation,
											"add"      = input$num1 + input$num2,
											"subtract" = input$num1 - input$num2,
											"multiply" = input$num1 * input$num2,
											"divide"   = input$num1 / input$num2
										)
									})

									output$result <- renderText({
										paste("Result:", result())
									})

								}

								# Run the application
								shinyApp(ui = ui, server = server)
							
						

Reactive Programming in R Shiny

Classic R

								
									x <- 2
									y <- x + 1
									print(y) #3


									 
								
							

Reactive Programming in R Shiny

Classic R

								
									x <- 2
									y <- x + 1
									print(y) #3

									x <- 5
									print(y) #?
								
							
expired_poll_which_value_does_y_have

Reactive Programming in R Shiny

Classic R

								
									x <- 2
									y <- x + 1
									print(y) #3

									x <- 5
									print(y) #3
								
							

Imperative programming
(sequential)

R Shiny

								
									x <- 2
									y <- reactive(x + 1)
									print(y) #3

									x <- 5
									print(y) #6
								
							

Declarative style "Recipe"

Reactive Programming in R Shiny

Example: k-means app from the Shiny for R Gallery

k_means_input_3_clusters
k_means_reactive_graph
k_means_plot_3_clusters

Reactive Programming in R Shiny

Example: k-means app from the Shiny for R Gallery

 
k_means_reactive_graph
 

Reactive Programming in R Shiny

Reactive expressions are only accessible within reactive consumers

								
									# Define server logic
									server <- function(input, output) {

										result <- reactive({
											# Handling division by zero with req()
											if (input$operation == "divide") {
												req(input$num2 != 0)
											}

											switch(input$operation,
														"add"      = input$num1 + input$num2,
														"subtract" = input$num1 - input$num2,
														"multiply" = input$num1 * input$num2,
														"divide"   = input$num1 / input$num2
											)
										})

										# print(input$num1) also would not work
										print(result())
										
										output$result <- renderText({
											paste("Result:", result())
										})

									}
								
							

Error in .getReactiveEnvironment()$currentContext() :
  Operation not allowed without an active reactive context.
• You tried to do something that can only be done from inside a reactive consumer.

Automatic Dependency Tracking

Dependents dynamically register callbacks in reactive sources

 
k_means_reactive_graph
								
									output$plot1 <- renderPlot({
										palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
															"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))
										
										par(mar = c(5.1, 4.1, 0, 1))
										plot(selectedData(),
												col = clusters()$cluster,
												pch = 20, cex = 3)
										points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
									})
								
							

Automatic Dependency Tracking

Dependents dynamically register callbacks in reactive sources

 
k_means_reactive_graph
								
									output$plot1 <- renderPlot({
										palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
															"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))
										
										par(mar = c(5.1, 4.1, 0, 1))
										plot(selectedData(),
												col = clusters()$cluster,
												pch = 20, cex = 3)
										points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
									})
								
							

Automatic Dependency Tracking

Dependents dynamically register callbacks in reactive sources

 
k_means_reactive_graph
								
									output$plot1 <- renderPlot({
										palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
															"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))
										
										par(mar = c(5.1, 4.1, 0, 1))
										plot(selectedData(),
												col = clusters()$cluster,
												pch = 20, cex = 3)
										points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
									})
								
							

Automatic Dependency Tracking

Dependents dynamically register callbacks in reactive sources

 
k_means_reactive_graph
								
									# Combine the selected variables into a new data frame
									selectedData <- reactive({
										iris[, c(input$xcol, input$ycol)]
									})
									
									clusters <- reactive({
										kmeans(
											selectedData(),
											input$clusters
										)
									})
								
							

Automatic Dependency Tracking

Dependents dynamically register callbacks in reactive sources

 
k_means_reactive_graph
								
									# Combine the selected variables into a new data frame
									selectedData <- reactive({
										iris[, c(input$xcol, input$ycol)]
									})
									
									clusters <- reactive({
										kmeans(
											selectedData(),
											input$clusters
										)
									})
								
							

Automatic Dependency Tracking

Dependents dynamically register callbacks in reactive sources

 
k_means_reactive_graph
								
									# Combine the selected variables into a new data frame
									selectedData <- reactive({
										iris[, c(input$xcol, input$ycol)]
									})
									
									clusters <- reactive({
										kmeans(
											selectedData(),
											input$clusters
										)
									})
								
							

Re-Calculation of reactive dependencies

 

k_means_input_3_clusters
k_means_reactive_graph
k_means_plot_3_clusters

Re-Calculation of reactive dependencies

Changed input triggers cascade of invalidation events

k_means_input_5_clusters
k_means_reactive_graph
k_means_plot_3_clusters

Re-Calculation of reactive dependencies

Changed input triggers cascade of invalidation events

k_means_input_5_clusters
k_means_reactive_graph
k_means_plot_3_clusters

Re-Calculation of reactive dependencies

Changed input triggers cascade of invalidation events

k_means_input_5_clusters
k_means_reactive_graph
k_means_plot_3_clusters

Re-Calculation of reactive dependencies

Invalidated nodes queue the callbacks on the server

k_means_input_5_clusters
k_means_reactive_graph
k_means_plot_3_clusters

Re-Calculation of reactive dependencies

Following collection, the server schedules the execution of the callbacks "flush"

k_means_input_5_clusters
k_means_reactive_graph
k_means_plot_3_clusters

Re-Calculation of reactive dependencies

And invalid nodes become cleared...

k_means_input_5_clusters
k_means_reactive_graph
k_means_plot_3_clusters

Re-Calculation of reactive dependencies

...completing the cycle

k_means_input_5_clusters
k_means_reactive_graph
k_means_plot_3_clusters

Reactive Programming in R Shiny

Overview from R Shiny CHEATSHEET reactivity diagram
Functions
  • reactive(): lazy, cached
  • observe(): eager, no value returned (arbitrary code)
  • reactiveValues(): list of reactive values (like input$...)
  • events: click, double-click etc.
  • isolate(): stop reactions (avoid dependencies). Useful when many inputs, update often will occur on clicking a button
  • invalidateLater(): automatic re-calculation, used in runExample("11_timer")

Best practices

  • Encapsulate logical units to minimise dependencies and avoid unnecessary recalculations when irrelevant inputs are changed
  • This also helps to avoid the accidental creation of loops
  • Use req() to avoid errors due to missing inputs, especially when opening the application
  • Carefully check the IDs of the inputs and outputs
  • Troubleshooting: use the library(reactlog)
  • Modularise, i.e. store ui and server as variables. This for example allows you to dynamically load parts of the UI later.

Further reading

Questions?