Interactive Data Visualization with R Shiny for Life Sciences

Assignment: Milestones

Michael Teske & Jonas Schmid, Zurich 11 April 2024

Assignment Overview

  • Complete 3+ additional Milestones
  • Deadline: Monday, 22 April 2024, 23:59 CET
  • Submit your work via Slack → see next page Overview_Milestones
  • You may start from the Solution of Day 2 (if you feel like it)
  • Choose from given suggestions (for individualists: or complete an equivalent work)
  • Group work is possible

Assignment Submission

  • Submit your assignment in the #assignment Slack channel
  • Adhere to the following format:
  1. Screenshot
  2. Short Description (used data, kinds of plots, functionality of the app)
  3. If deployed online: link to the app
  4. If groupwork: who contributed what
  5. Code of the app (attach app.R file)

Evaluation

Please evaluate the Tutorial (if not done yet)

The link to the feedback form can be found on Slack

Milestones Overview

We suggest below milestones to choose from

On the following pages you will find hints on how to complete them

Task Difficulty
Deploy app online 2
DataTable extensions (download csv) 2
subset dataset 2
shinyWidgets : Extend widgets available in shiny 2
Shiny Dashboard layout elements 3
Add favicon 1.5
Interactive help function 3
Plot statistics 3
Password protection with shinyauthr 3

Deploy app online

Using shinyapps.io (free)

OR install shiny-server on a server that is remotely accessible and has port forwarding

  • Very simple with shinyapps.io
  • Detailed instructions on how to upload your app after login
  • Put your app with all dependencies in a separate folder and deploy it using the rsconnect package
  • Monthly limit for the app runtime with the free plan
  • Suitable for most purposes

DataTable extensions

We can enhance our dataTableOutput with extensions,
check: https://rstudio.github.io/DT/extensions.html

To add a button for downloading displayed data in csv format (e.g. to open in MS Excel),
we can add the following code to the renderDataTable() function:

Server
							
								extensions  = 'Buttons',
								options     = list(
									pageLength  = 10,
									scrollX     = T,
									pagingType  = 'simple_numbers',
									dom         = 'Bfrtip', 
									buttons     = list(
										list(extend = 'csv', filename = 'selected_dots')
									) 
								),
								rownames = F,
								server   = F # necessary to download whole table
							
						

Pay attention to the fact that some settings are provided inside the options list (!)

(note: the dom = 'Bfrtip' part is crucial)

Subset dataset

It can be a good idea to subset the dataset, to show only relevant information.

For example, using the iris dataset, we can select the species that we want to show.

One way to achieve this is via using reactive({}) together with selectInput:

selectInput_subset only setosa and versicolor shown on plot
UI
								
									selectInput(
										'species',
										label     = 'Species',
										choices   = levels(iris$Species),
										selected  = levels(iris$Species),
										multiple  = T
									)
								
							
Server
								
									# Subset iris data based on selected species
									data_subset <- reactive({
										req(input$species)
										iris_subset <- filter(iris, Species %in% input$species)
									})

									# Adjust ggplot to use the subset dataset
									violinplot  <- reactive({
										ggplot(data_subset(), aes(x=Species, y=Petal.Length)) + 
											...
									})
								
							

shinyWidgets : Extend widgets available in shiny

We can get more widgets from the shinyWidgets package!

Let's improve the subsetting by allowing drag and drop ordering of the species, using selectizeInput

- or try to add another widget from the package

selectize_drag_order subset with changed order of species
UI
								
									library(shinyWidgets) # capital W
									...
									selectizeInput(
										inputId   = 'species',
										label     = 'Species',
										choices   = levels(iris$Species),
										selected  = levels(iris$Species),
										multiple  = T,
										options   = list(
											plugins   = list('remove_button', 'drag_drop')
										)
									)
								
							
Server
								
									data_subset <- reactive({
									req(input$species)
										iris_subset         <- filter(iris, Species %in% input$species)
										# Adjust factor levels to make the plot honour our custom order
										iris_subset$Species <- factor(iris_subset$Species, levels=input$species)
										iris_subset         <- iris_subset[order(iris_subset$Species), ]
									})
								
							

Shiny Dashboard layout elements

Check the documentation of shinydashboard

Add another element to your UI, e.g. a tabBox() (easy) or menuItem() (a bit more tricky)

shinydashboard_tabboxes

Add a favicon

Favicons are small icons that a website can display in the tabs of your browser

We can add a favicon to our Shiny app like this:

UI
							
								# Add this to tags$head()
								tags$link(rel='shortcut icon', href='favicon.png'),
							
						

Filepaths can be tricky, another way to include the favicon is by encoding it as a base64 image source
using small (!) images and a converter, like https://www.base64encoder.io/image-to-base64-converter/

UI
							
								# Add this to tags$head()
								tags$link(rel='shortcut icon', href='...'),
							
						

If you get an "unexpected symbol" error, try starting the app by pressing the "Run App" button in R Studio.

Interactive help function

By including the introjs JavaScript library, we can create an attractive help function!

UI
							
								# Add this at the end inside dashboardBody()
								includeScript('https://cdn.jsdelivr.net/npm/intro.js@7.2.0/intro.min.js')
							
						

Using ID selectors, we can attach help texts to HTML elements in our Shiny App

The help texts are defined in JSON (JavaScript Object Notation) format, like this:

UI
							
								tags$script("
									// create an array with objects describing each step in the guided tour 
									var Steps = [
										{
											element:  '#species-label',
											intro:    'Select the iris species that you would like to include in the plot. You can drag and drop the items to display the species in the desired order.',
											position: 'right'
										},
										{
											element:  '#size-label',
											intro:    'You can adjust the size of the dots in the plot.',
											position: 'right'
										}
										...
									];
								")
							
						

Interactive help function

Now let's add an actionButton inside the dashboardSidebar()

UI
							
								actionButton(
									inputId   = 'help',
									label     = 'Help',
									icon      = shiny::icon('question-circle')
								)
							
						

And extend our JavaScript to call the help function when clicking on the actionButton (check the id!)

UI
							
								// Below JSON
								// initialize an introjs instance          
								var intro = introJs();
							  
								// load data
								intro.setOptions({steps: Steps});
							
								// start intro onclick on help button
								document.querySelector('#help').addEventListener('click', function(e) {
									intro.start();
								});
							
						

You can troubleshoot JavaScript errors using your browser's developer tools [F12] console

Plot statistics

In ggplot, we can add a statistics layer to a plot:

Server
							
								... +
								stat_compare_means(
									comparisons = pairwise_comp( unique(data_subset()$Species)),
									method      = 'wilcox.test',
									label       = 'p.signif'
								)
							
						

Here we use the pairwise_comp function to create a list of comparisons between two neighbouring species

"Outside"
							
								pairwise_comp <- function(conditions) {
									conditions.clean  <- unique(as.character(conditions))
									comparisons <- combn(conditions.clean, 2, simplify=F)
									return(comparisons)
								}
							
						

Plot statistics

To enable dynamic toggling of the statistics layer,
add an input widget (e.g. checkboxInput()) and change the plot definition:

Server
							
								# Instead of returning the plot directly, store it for later modification
								violinplot  <- reactive({
									pl  <- ggplot(data_subset(), aes(x=Species, y=Petal.Length)) + 
										...

									if(input$statistics == T && !is.null(data_subset())) {
										pl  <- pl +
											stat_compare_means(
												...
											)
									}

									pl
								})
							
						

Password protection with shinyauthr

Explore the shinyauthr package and protect your app with a login.
This is a slightly more complicated task. Make sure to have a look at this example.

(of note: if you have a server, you could also set up a reverse-proxy with nginx
and use .htpasswd basic authentication, but this is not a milestone!)

Questions & Feedback

→ Slack