Interactive Data Visualization with R Shiny for Life Sciences

Day 2: Milestones

Michael Teske & Jonas Schmid, Zurich 11 April 2024

Tips & Tricks from Day 1

Overview

Overview_Milestones

7. shinyDashboard

Requirements:

  • shinydashboard package installed
  • Your Shiny app code from the end of Day 1 open in R Studio
  • Want to start over? Use the solution posted on Slack

7. shinyDashboard

Code from the end of Day 1 (example)

							
								library(shiny)
								library(tidyverse)
								library(ggbeeswarm)

								data(iris)

								# Define UI
								ui <- fluidPage(
									titlePanel("My Shiny App"),
									sidebarLayout(
										sidebarPanel(
											sliderInput("dotsize", "Dot Size", min=0.1, max=5, value=1, step=0.1),
											downloadButton(
												outputId  = 'save_violinplot',
												label     = 'Save plot',
												icon      = shiny::icon('download')
											)
										),
										mainPanel(
											plotOutput("plot")
										)
									)
								)

								# Define server logic
								server <- function(input, output) {
									violinplot <- reactive({
										ggplot(iris, aes(x=Species, y=Petal.Length)) + 
											geom_violin(aes(fill=Species)) + 
											geom_quasirandom(size=input$dotsize) + 
											geom_boxplot(width=0.1)
									})
									
									output$plot <- renderPlot({
										violinplot()
									})
									
									output$save_violinplot <- downloadHandler(
										filename    = 'plot.pdf',
										content     = function(file) {
											ggsave(file, plot=violinplot(), width=297, height=210, unit='mm')
										}
									)
								}

								# Run the application
								shinyApp(ui = ui, server = server)
							
						

7. shinyDashboard

fluidPage

(default)

fluidPage
									
										ui <- fluidPage(
											titlePanel("Hello Shiny!"),
											sidebarLayout(
												sidebarPanel(…),
												mainPanel(…)
											)
										)
									
								

shinyDashboard

 

shinyDashboard
									
										library(shinydashboard)

										ui <- dashboardPage(
											dashboardHeader(title="..."),
											dashboardSidebar(...),
											dashboardBody(...)
										)
									
								

Task: Change the UI to shinyDashboard! Time: 5 min

7. shinyDashboard

Solution (example):

							
								library(shiny)
								library(shinydashboard)
								library(tidyverse)
								library(ggbeeswarm)

								data(iris)
								
								# Define UI
								ui <- dashboardPage(
									dashboardHeader(title = "My Shiny App"),
										dashboardSidebar(
											sliderInput("dotsize", "Dot Size", min=0.1, max=5, value=1, step=0.1),
											downloadButton(
												outputId  = 'save_violinplot',
												label     = 'Save plot',
												icon      = shiny::icon('download')
											)
										),
										dashboardBody(
											plotOutput("plot")
										)
								)
								
								# Define server logic
								server <- function(input, output) {
									violinplot <- reactive({
										ggplot(iris, aes(x=Species, y=Petal.Length)) + 
											geom_violin(aes(fill=Species)) + 
											geom_quasirandom(size=input$dotsize) + 
											geom_boxplot(width=0.1)
									})
									
									output$plot <- renderPlot({
										violinplot()
									})
									
									output$save_violinplot <- downloadHandler(
										filename    = 'plot.pdf',
										content     = function(file) {
											ggsave(file, plot=violinplot(), width=297, height=210, unit='mm')
										})
								}
								
								# Run the application
								shinyApp(ui = ui, server = server)
							
						

7. shinyDashboard

  • Run the app - does everything look good?
  • Check the download button - misaligned and wrong colour 😢
    shiny_dashboard_misaligned_downloadbutton
  • → Go to the Webdevelopment lecture!

7. shinyDashboard

Refine the layout - rows & boxes

  • Shinydashboard utilizes Bootstrap, a CSS framework
  • It incorporates a 12-column grid system
  • Content is organised into rows and boxes
  • Boxes range in width from 1 to 12 columns
  • CSS classes with color schemes ("status") named:
    success, primary, warning, and danger.
UI
								
									fluidRow(
										box(
											width       = 12, 
											status      = 'success', 
											title       = 'Plot',
											plotOutput("plot")
										)
								
							

Task: Put your plotOutput inside a fluidRow(box(...))

Time: 10 min

8. Brushes

We can use brushes to place a selection on a plot

brush rectangular selection on plot
  • Brushes are defined in the UI...
  • ...as parameter in plotOutput
    										
    											plotOutput(
    												"plot",
    												brush = "plot_brush"
    											)
    										
    									

8. Brushes

We can use brushes to place a selection on a plot

  • Brushes are defined in the UI...
  • ...as parameter in plotOutput
    										
    											plotOutput(
    												"plot",
    												brush = "plot_brush"
    											)
    										
    									
  • They have an ID
  • and are accessed with input$ID
    										
    											# (inside server function)
    											selected  <- reactive({
    												brushedPoints(iris, input$plot_brush)
    											})
    										
    									
  • brushedPoints() can be used to retrieve selected dots in the plot

8. Brushes

DataTable Output

data.frames, such as the selected dots, can be output using DataTables

Server
							
								output$table_selected <- renderDataTable(
									selected()
								)
							
						
UI
							
								dataTableOutput(outputId='table_selected')
							
						

8. Brushes

Requirements:

  • For the moment, please change geom_quasirandom to geom_point!

8. Brushes

Task: add a brush to your plot and output selected data

Steps:

  • Add a brush to plotOutput
  • Retrieve selected dots with brushedPoints()
  • Create an output, using renderDataTable({})
  • Create a new fluidRow in the UI
  • Output the DataTable there, using dataTableOutput()
  • Check the IDs of the brush/output
Time: 15 min

Code:

								
									# UI
									plotOutput(
										"plot",
										brush = "plot_brush"
									)
								
							
								
									# Server
									selected  <- reactive({
										brushedPoints(iris, input$plot_brush)
									})
								
							
								
									# Server
									output$table_selected <- renderDataTable(
										selected()
									)
								
							
								
									# UI
									fluidRow(
										box(
											width       = 12, 
											status      = 'primary', 
											title       = 'Data',
											dataTableOutput(outputId='table_selected')
										)
									)
								
							

8. Brushes

Task: add a brush to your plot and output selected data

Steps:

  • Add a brush to plotOutput
  • Retrieve selected dots with brushedPoints()
  • Create an output, using renderDataTable({})
  • Create a new fluidRow in the UI
  • Output the DataTable there, using dataTableOutput()
  • Check the IDs of the brush/output
Time: 15 min

Code:

								
									# UI
									plotOutput(
										"plot",
										brush = "plot_brush"
									)
								
							
								
									# Server
									selected  <- reactive({
										brushedPoints(iris, input$plot_brush)
									})
								
							
								
									# Server
									output$table_selected <- renderDataTable(
										selected()
									)
								
							
								
									# UI
									fluidRow(
										box(
											width       = 12, 
											status      = 'primary', 
											title       = 'Data',
											dataTableOutput(outputId='table_selected')
										)
									)
								
							

8. Brushes

Solution (example)

							
								library(shiny)
								library(shinydashboard)
								library(tidyverse)
								library(ggbeeswarm)

								data(iris)
								
								# Define UI
								ui <- dashboardPage(
									dashboardHeader(
										title = "My Shiny App"
									),
									dashboardSidebar(
										sliderInput("dotsize", "Dot Size", min=0.1, max=5, value=1, step=0.1),
										downloadButton(
											outputId  = 'save_violinplot',
											label     = 'Save plot',
											icon      = shiny::icon('download')
										)
									),
									dashboardBody(
										tags$head(
											includeCSS('04_includeCSS.css')
										),
										fluidRow(
											box(
												width       = 12, 
												status      = 'success', 
												title       = 'Plot',
												plotOutput(
													"plot",
													brush = "plot_brush"
												)
											),
										),
										fluidRow(
											box(
												width       = 12, 
												status      = 'primary', 
												title       = 'Data',
												dataTableOutput(outputId='table_selected')
											)
										)
									)
								)
								
								# Define server logic
								server <- function(input, output) {
									violinplot <- reactive({
										ggplot(iris, aes(x=Species, y=Petal.Length)) + 
											geom_violin(aes(fill=Species)) + 
											geom_point(size=input$dotsize) + 
											geom_boxplot(width=0.1) +
											theme(aspect.ratio=3/4)
									})
								
									selected  <- reactive({
										brushedPoints(iris, input$plot_brush)
									})
									
									output$plot <- renderPlot({
										violinplot()
									})
									
									output$save_violinplot <- downloadHandler(
										filename    = 'plot.pdf',
										content     = function(file) {
											ggsave(file, plot=violinplot(), width=297, height=210, unit='mm')
										})
								
									output$table_selected <- renderDataTable(
										selected()
									)
								}
								
								# Run the application
								shinyApp(ui = ui, server = server)
							
						

8. Brushes - Extended

Let's add back geom_quasirandom (replace geom_point) - does the brush still work as expected?

  • geom_quasirandom scatters the points on the x-axis and changes their value in the plot
  • brushedPoints() still searches for the original values (which is a good thing)
  • Use the following function to retrieve the original values through the scattered values from the plot
"Outside"
							
								# Filters and returns rows from a dataset dset 
								# where the x and y coordinates fall within the boundaries defined by a brush object, 
								# based on data extracted from a specified layer
								find_dots <- function(dset, plot, layer, brush) {
									tmp <- layer_data(plot, layer)
									idx <- tmp$x >= brush$xmin & tmp$x <= brush$xmax & tmp$y >= brush$ymin & tmp$y <= brush$ymax
									return(dset[idx, ])
								}
							
						
 
Server
							
								# Replace brushedPoints()
								# Reactively identify the dots selected in the plot using the brush.
								# 2 corresponds to the layer of the geom_quasirandom function
								selected  <- reactive({
									req(input$plot_brush)
									find_dots(data_subset(), violinplot(), 2, input$plot_brush)
								})
							
						

9. Brush-based Zoom-in

  • We can also use the coordinates from the brush to zoom-in into our plots with a little trick:
  • We simply limit the coordinates of our plots to the values from the brush
  • And we can do this when double-clicking on the plot
Server
							
								# Initialize zoom (NULL = no-zoom)
								zoom  <- reactiveValues(x = NULL, y = NULL)

								observeEvent(input$plot_dblclick, {
									if (!is.null(input$plot_brush)) {
										zoom$x <- c(input$plot_brush$xmin, input$plot_brush$xmax)
										zoom$y <- c(input$plot_brush$ymin, input$plot_brush$ymax)
									} else {
										zoom$x <- NULL
										zoom$y <- NULL
									}
								})

								violinplot  <- reactive({
									ggplot(data_subset(), aes(x=Species, y=Petal.Length)) + 
										geom_violin(aes(fill=Species)) + 
										geom_quasirandom(size=input$size) + 
										geom_boxplot(width=0.1) +
										coord_cartesian(xlim=zoom$x, ylim=zoom$y, expand=T) +
										theme(aspect.ratio=3/4)
								})
							
						
UI
								
									plotOutput(
										outputId  = 'plot',
										dblclick  = 'plot_dblclick',
										brush     = brushOpts(
											id          = 'plot_brush',
											resetOnNew  = T
										)
									)
								
							
  • Using observeEvent() on the server, we watch for the dblclick event from plotOutput()
  • In addition, we change the brush definition, so we can set resetOnNew to TRUE
  • The latter removes the brush whenever the plot is redrawn, making zooming-out on double-click more convenient
  • If there is no brush when a double-click event happens on the plot, zoom becomes NULL and the coordinates of the plot are reset

Good job! 👍

Questions?